

A Randomized Comparison of Anatomic versus Functional Diagnostic Testing Strategies in Symptomatic Patients with Suspected Coronary Artery Disease

Pamela S. Douglas, Udo Hoffmann, Manesh R. Patel, Daniel Mark, Lawton Cooper, and Kerry Lee

On behalf of the PROMISE Investigators

Duke Clinical Research Institute, Massachusetts General Hospital, and the National Heart, Lung, and Blood Institute

Supported by R01HL098237, R01HL098236, R01HL98305 and R01HL098235 from the National Heart, Lung, and Blood Institute

Presenter Disclosures

Research Grants/Contracts to Institution

- Abiomed
- Bristol-Meyers Squibb
- Columbia University
- Gilead
- Edwards Lifesciences
- HeartFlow
- Ikaria/Bellerophon
- Massachusetts General Hospital/Harvard Medical School
- National Institutes of Health NHLBI, NCI, NIAID
- ResMed
- Roche
- Stealth Peptides
- University of South Florida

Royalties (<\$10,000)

UpToDate / Kluwer

Background

- New onset stable chest pain accounts for approximately 4 million stress tests annually in the United States
- Limited randomized data in stable CP pts to guide care
 - Little consensus about which test is preferable
 - Impact of testing on health-related outcomes is unexplored
- Current testing practices raise concerns regarding frequent testing of very low risk populations and high rates of finding no obstructive coronary artery disease in patients undergoing elective catheterization

Background (cont'd)

- Coronary CT angiography (CTA) could reduce unneeded invasive testing and improve outcomes
 - Higher positive and negative predictive accuracy for CAD
 - Ability to detect a broader spectrum of CAD, including prognostically important, non-obstructive disease
 - CTA is superior to usual care in 3 RCTs of acute CP patients
- The impact of the information derived from an initial strategy of noninvasive anatomic versus functional test data on subsequent management and clinical outcomes in stable chest pain patients is unknown

PROMISE Study Hypothesis and Design

PROspective Multicenter Imaging Study for Evaluation of chest pain

- Hypothesis: As compared to functional testing, an initial strategy of anatomic testing with CTA would improve the health outcomes of patients with symptoms suspicious for CAD who require further testing
- Design: Multicenter, randomized, pragmatic comparative effectiveness trial comparing these two contemporary diagnostic strategies

PROMISE Trial Design

Symptoms suspicious for significant CAD Requiring non-emergent noninvasive testing 1:1 Randomization — 10,000 patients Stratified by site and intended functional test **Anatomic strategy** Functional strategy Exercise ECG or Pharmacologic 64+ slice exercise imaging stress imaging CTA Tests read locally; Results immediately available Subsequent testing/management by site care team, per guidelines Minimum follow-up 12 months

Study Population

Inclusion criteria

- Non-urgent, noninvasive CV testing clinically necessary
- No history of CAD or recent CAD evaluation
- Age ≥55 years (men) or ≥65 years (women) OR
- Age 45–54 years (men) or 50–64 years (women) with ≥1 major cardiac risk factor

Exclusion criteria

- Unstable hemodynamics or arrhythmias
- Urgent evaluation for R/O ACS
- Known significant congenital, valvular or cardiomyopathic heart disease
- Any reason the patient could not be safely randomized

Study Procedures

- Diagnostic testing quality control for all modalities
 - Certification of sites and test readers prior to beginning enrollment
 - Ongoing quality control throughout the trial
- Tests performed and interpreted locally
 - Test information sheets outlining diagnostic and prognostic implications of findings in each modality
- Site clinical team made all subsequent care decisions; Optimal medical therapy encouraged
 - Patient and caregiver educational materials

Effectiveness and Safety Endpoints

- Primary endpoint
 - All-cause mortality, myocardial infarction, unstable angina hospitalization, and major complications from CV procedures (stroke, bleeding, renal failure, anaphylaxis)
- Secondary endpoints
 - Primary endpoint + invasive catheterization without obstructive CAD
 - Other components of the primary endpoint
 - Invasive catheterization without obstructive CAD
 - Cumulative radiation exposure ≤90 days
 - (Resource utilization)
- All events adjudicated by blinded Clinical Events Committee

Statistical Analysis

- Sample size was chosen to provide 90% power for detecting a 20% relative reduction in the primary endpoint with CTA
- All treatment comparisons performed as randomized (ITT)
- For clinical endpoints, time-to-event analysis was performed using the Cox model
- To account for subject heterogeneity, comparisons were adjusted for age, sex, CAD risk equivalent, and intended functional test at randomization
- All testing was two-sided and included 95% confidence intervals

Randomization and Follow-up

Randomized

(n=10,003; 193 NA sites; July 2010 – Sept 2013)

Anatomic testing strategy (CTA) (n=4996)

Functional testing strategy (n=5007)

Allocation

Received CTA/CAC as 1st test (n=4686, 94%)

- Received other test as 1st test (n=154, 3%)
- No test (n=156, 3%)

Received functional test as 1st test (n=4692, 94%)

Stress nuclear (67%) Stress echo (23%) Ex ECG (10%)

Follow-up

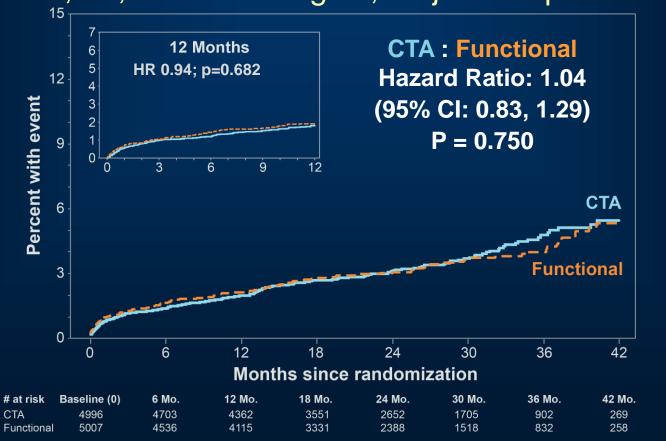
12-month follow-up

Completed 4750 (95%)

12-month follow-up

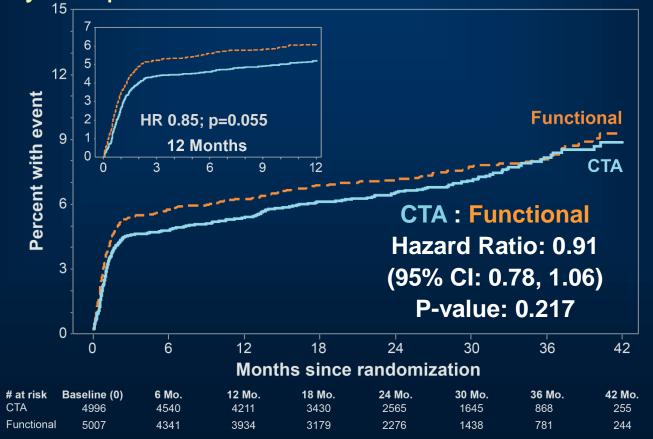
Completed 4600 (92%)

Median follow-up: 25 months (IQR 18, 34)

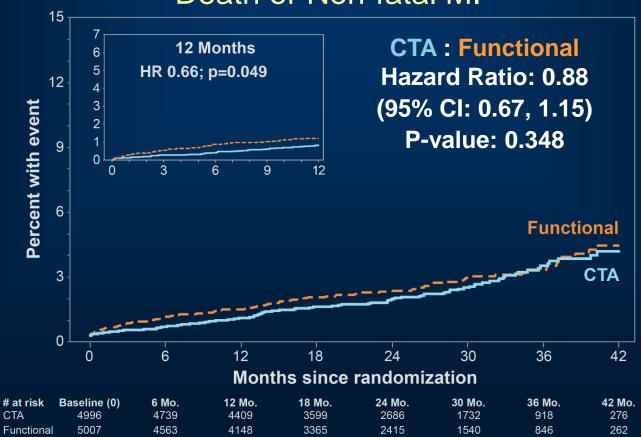

Maximum follow-up: 50 months

Baseline Characteristics

		CTA (n=4996)	Functional (n=5007)
Demographics	Age — mean ± SD, yrs	60.7 ± 8.3	60.9 ± 8.3
	Female sex — %	52	53
	Non-white race — %	16	15
Risk factors	Hypertension — %	65	65
	Diabetes — %	21	22
	Dyslipidemia — %	67	68
	Family hx premature CAD — %	33	32
	Current or past smoking — %	51	51
1° Symptom	Chest pain or DOE — %	88	88
Anginal type	Typical or atypical — %	89	89
Pretest probability CAD Diamond–Forrester/CASS — mean %		53.4	53.2



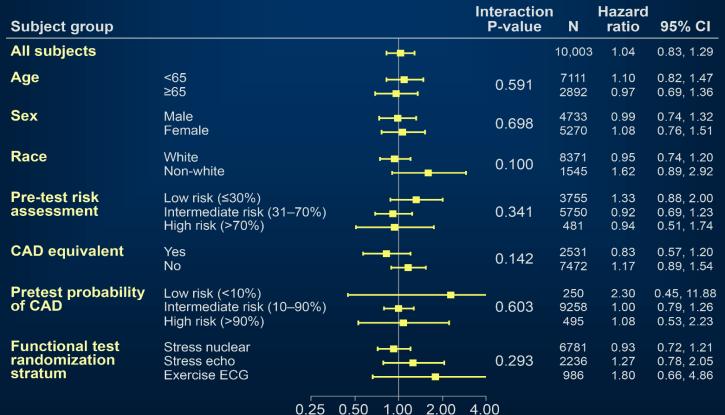
Primary Endpoint: Death, MI, Unstable Angina, Major Complications



Secondary Endpoint:

Primary Endpoint + Catheterization w/o Obstructive CAD

Secondary Endpoint:Death or Non-fatal MI



Clinical Endpoint Events

	CTA (n=4996)	Functional (n=5007)	Adj HR (95% CI)	P value
Primary endpoint composite	164	151	1.04 (0.83–1.29)	0.750
All-cause death	74	75		
Nonfatal MI	30	40		
Unstable angina hosp	61	41		
Major procedural complications	4	5		
Primary endpoint plus cath without obstructive CAD	332	353	0.91 (0.78–1.06)	0.217
Death or nonfatal MI	104	112	0.88 (0.67–1.15)	0.348
Death, nonfatal MI, or unstable angina hospitalization	162	148	1.04 (0.84–1.31)	0.703

Primary Endpoint: Subgroup Analyses

Anatomic

testing better testing better

Functional

Secondary Endpoint: Catheterization Without Obstructive CAD ≤90 days

	CTA (n=4996)	Functional (n=5007)	P value
Invasive catheterization without obstructive CAD — N (%)	170 (3.4)	213 (4.3)	0.022
Invasive catheterization	609 (12.2%)	406 (8.1%)	
With obstructive CAD (% of caths)	439 (72.1%)	193 (47.5%)	
Revascularization	311 (6.2%)	158 (3.2%)	
CABG	72	38	

Secondary Endpoint: Cumulative Radiation Exposure ≤90 days

Mean ± SD; mSv	CTA (n=4996)	Functional (n=5007)	P value
All patients	12.0 ± 8.5	10.1 ± 9.0	<0.001
No radiation exposure	4%	33%	
Intended nuclear stress test randomization stratum	12.0 ± 8.4	14.1 ± 7.6	<0.001
Intended stress echo randomization stratum	12.6 ± 9.0	1.3 ± 4.3	<0.001
Intended exercise ECG randomization stratum	10.4 ± 7.8	2.3 ± 5.4	<0.001

Summary

- PROMISE enrolled a symptomatic, intermediate risk population for whom testing is currently recommended
- There is a low event rate in this contemporary population
- There were no significant differences in outcomes between an initial anatomic (CTA) or functional testing strategy with respect to the primary endpoint overall or in any subgroup
- An initial CTA strategy was associated with a lower rate of invasive catheterization without obstructive CAD
- Radiation exposure was higher in CTA arm overall, but lower in those patients for whom a nuclear test was specified at randomization as the intended functional test, and who were then randomized to CTA

Conclusions

- Compared to usual care using a functional testing strategy, use of an initial anatomic testing strategy employing CTA did not improve clinical outcomes in patients with suspected CAD
- Our results suggest that CTA is a viable alternative to functional testing
- These real-world results should inform noninvasive testing choices in clinical care as well as provide guidance to future studies of diagnostic strategies in suspected heart disease

Results Published Online Today

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Outcomes of Anatomical versus Functional Testing for Coronary Artery Disease

Pamela S. Douglas, M.D., Udo Hoffmann, M.D., M.P.H., Manesh R. Patel, M.D., Daniel B. Mark, M.D., M.P.H., Hussein R. Al-Khalidi, Ph.D., Brendan Cavanaugh, M.D., Jason Cole, M.D., Rowena J. Dolor, M.D., Christopher B. Fordyce, M.D., Megan Huang, Ph.D., Muhammad Akram Khan, M.D., Andrzej S. Kosinski, Ph.D., Mitchell W. Krucoff, M.D., Vinay Malhotra, M.D., Michael H. Picard, M.D., James E. Udelson, M.D., Eric J. Velazquez, M.D., Eric Yow, M.S., Lawton S. Cooper, M.D., M.P.H., and Kerry L. Lee, Ph.D., for the PROMISE Investigators*

ABSTRACT

BACKGROUND

Many patients have symptoms suggestive of coronary artery disease (CAD) and are often evaluated with the use of diagnostic testing, although there are limited data from randomized trials to guide care.

THANK YOU to PROMISE Patients and Sites...

...and to the PROMISE Team

Operational Leadership Committee

Hussein R. Al-Khalidi Denise Bonds Nakela Cook Lawton Cooper Rowena J. Dolor Pamela S. Douglas Christopher B. Fordyce Alan Go Tina Harding Sarah Hayden **Udo Hoffmann** Andrzej Kosinski

Mitchell W. Krucoff

Eric Leifer **Daniel Mark Beth Martinez** Daniel W. Mudrick Manesh R. Patel Michael H. Picard Geoffrey Rubin Kristen Salvaggio Ricky M. Schneider Alexandra Shen Jean Claude Tardif Wanda Tate James E. Udelson John Vavalle Eric J. Velazquez

Core Laboratories

CTA

Udo Hoffmann Stephan Achenbach Erin Corsini Brian B. Ghoshhajra Michael Lu Quynh Truong

<u>Nuclear</u>

James E. Udelson

Stress Echo

Michael H. Picard

Stress ECG

Mitchell W. Krucoff

Coronary Angiography
Manesh R. Patel
W. Schuyler Jones

DSMB

Robert Bonow (Chair)
Garnet Anderson
Alain Bertoni
J. Jeffrey Carr
James K. Min
Michael Proschan
John A. Spertus
Connie M. Ulrich

Diagnostic Testing Coordinating Center

Udo Hoffmann Charles Apgar Kristen Salvaggio James E. Udelson

Kerry Lee